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The paper discusses three fast methods for determination of the reaction order, as follows: the 
single-point method proposed by Kissinger, Horowitz and Metzger, an original two-point 
method, and the three-point method suggested by a Gorbachev's paper. These methods cannot 
elucidate the reaction mechanism, but they can help in the rapid derivation of the apparent 
kinetic parameters n and E. 

The fast methods allow the evaluation of kinetic parameters via a small number 
of calculations if a certain kinetic mechanism is assumed. Due to the fact that these 
methods process only a small number of experimental data, they do not permit 
identification of the kinetic mechanism, or of modifications which could appear 
during the reaction. However, analysis of the experimental data with several of 
these methods shows whether the phenomenon involved is simple or complex, 
which can be assessed from the agreement of the results. 

The paper presents the following three fast methods of kinetic parameter 
evaluation: the single-point method of Kissinger [ i], Horowitz and Metzger [2], the 
original two-p0int method proposed by the present author, and the three-laoint 
method suggested by a Gorbachev's paper [3]. The theoretical considerations 
mainly refer to the kinetic nth-order model, but they could be extended to other 
kinetic mechanism. 

Theoretical 

The theoretical study starts from the following well-known differential equation: 

d~ - Z e x p ( -  ~ T ) ( 1 - ~ ) "  ~-~ (1) 

where the notations are the usual ones. 
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d T  
Under non-isothermal conditions, at a constant heating rate f l -  dt 

integration of  Eq. (1) gives: 

1 - ( 1 - 0 t )  1 -"  ZE 

1 - n  - ~-RP(X) 

i e-U where x = E/RT.and p(x)  = -~ -  du. 

x 

(2) 

a) Single-point method 

d2ct 
I f  we take Rx = ( 1 -  ~) . . . .  the condition ~ -  = 0 leads to 

Z E  x 2 e  x 
- (1 - c z )  x -"  

/~R n 

Substituting this expression into Eq. (2) gives 

1 
n r  R~, -1 = I +  - n p (x ) xZ e~  

n 

n = 1 : - In R~ = p(x) x2e ~ 

1 
When x --,0% we obtain R~o = n l - . ,  because 

(3) 

lim p(x)  xEe x = 1 
x--* oo 

Relationships (3) allow tabulation of  the values of  function R x against x and n 

(Table l). In our calculations we have used the fourth-degree rational approxi- 

mation for p(x) [4]. 
The data in Table 1 show that the ratio Rx/Ro o varies slowly with the reaction 

order, i fx  is not too small. Thus, when x--- 30, the mean value of  the ratio Rao/R ~ is 
1.062. Accordingly, we can write: 

1 
R3o = 1.062 nl - ,  

This relationship was proposed by Gyulai and Greenhow [5]. A more general 

relationship was given by Gorbachev [6]. In Eq. (3), Gorbachev substituted the 
following approximation of the temperature integral: 

e - x  
p(x) .~ - -  

x (x  + 2) 
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Table I The values of (1 -~)m,, for various orders and x's, 

911 

X 
10 20 30 40 50 

n 

0,1 0,092 0,085 0.082 0.081 0.080 0.077 
0.2 0.158 0,146 0.142 0,140 0,139 0.134 
0.3 0.211 0.196 0. t9I 0A88 0,186 0. t79 
0.4 0.256 0,238 0.231 0.228 0.226 0,217 
0.5 0.294 0.273 0.266 0.262 0.260 0,250 
0.6 0,328 0.305 0.297 0.292 0.290 0.279 
0.7 0.357 0.333 0.324 0.319 0.316 0.305 
0.8 0.384 0.358 0348 0.343 0.340 0.328 
0.9 0.408 0,381 0,371 0,365 0.362 0,349 
1.0 0.430 0,402 0.391 0.385 0.382 0.368 
1.1 0.450 0.420 0A 10 0.404 0.400 0,386 
1.2 0.469 0.438 0.427 0.421 0.417 0.402 
1.3 0.486 0.455 0.443 0,437 0.433 0.417 
1.4 0.502 0,470 0.458 0.451 0.448 0.431 
I~5 0.517 0A84 0,472 0.465 0.461 0,444 
1,6 0,531 0.498 0,485 0,478 0,47d 0.457 
1.7 0.544 0,510 0,497 0.490 0,486 0,469 
1.8 0.556 0.522 0.509 0.502 0.498 0.480 
1.9 0.567 0.533 0.520 0,513 0.509 0,490 
2.0 0.578 0.544 0.530 0.523 0.519 0,500 
2,5 0.625 0,589 0,575 0,568 0.563 0.543 
3.0 0.661 0,626 O611 0.604 0,599 0.577 

and obtained 

n r  

! 

Rx=(l+ 1--n x ) " - I n  x + 2  

x 
n = 1 "  - In R x - 

x + 2  

Since R x depends on both n and x (or E), determination of  the latter is possible 
only by means o f  an iterative procedure. Thus, considering that the value o f  Rx, 
determined from the TG curve, corresponds to x = 3 0  (a good hypothesis for 
polymers), by means of  Table 1 we can obtain the first approximation of  n. 

The value obtained allows evaluation of  the activation energy using the 
relationship [7] 

E-(1 -~) . , a~  d-r ma~ (4) 
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We can now evaluate a better approximative value of  x. The calculation process 
is repeated until the values of  the kinetic parameters for both n and E are not 
modified by a new iteration. 

If  we have several values evaluated from the TG  curve, the simplest differential 
method for determining Eis  an Arrhenius plot of  the logarithm of  the nth-order rate 
constant against the reciprocal of  absolute temperature: 

lnl.(l_ct) J l n Z -  E RT 

This value of E is fairly precise, even if first approximation of  n is not exact. The 
value o f x  is the calculated, and with this value it is possible to establish the precise 
value of  n by means of  Table 1. 

b) Two-point method 

The method discussed here is based on our following empirical approximation: 

p(x) ,~ 0.721 x -  1.924 e-= (5) 

The relative error of  approximation (5) is smaller than 2% in the interval 
10 ~< x ~< 65, and below 1% for the interval 12 ~< x ~< 50. For  x = 5, the relative error is 
around 10%. The proposed approximation has a practical use, because x lies in the 
above interval in most situations. 

Substituting Eq. (5) into Eq. (2) gives 

-n  Z (R~0 .924  E 
1 - ( 1 - c t ) l  - 0.721 Tt'924e -~-r (6) 

1 - n  f l \ E J  

If  we multiply both sides of  Eq. (6) by (1-~t)", the following relationship is 
obtained: 

(1 - ct)"- (1 - ~t) 0.721 fl-1 ( R )  0"924d~ T L924 
1 - n  = \ E J  d t  (7) 

Hence, for two certain conversions, ~l and ~2, we can write: 

(1 - 0t,)"- (1 - ~q) ~ -  I ( r l  ~1-924 
(l-ctz)"- (I - ~z) = ~~- ~,-~2,] (8) 

\dt//2 
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In succession, taking ~q = 0.25 and ~2 = 0.75, relationship (8) can be written as 

fol lows 

0 .75n - -0 .75  __ ( ~ ) l ( Z l ~  1"924 

o..  (7)  , ' ,  

Let us designate 

0 .75"-  0.75 
B ( n )  - 0.25"-0 .25 (10) 

The values of  function B(n) as a function of  n are listed in Table 2. 
The procedure is as follows: we evaluate (dct/dt)l and T1 corresponding to 

~ = 0.25 (25%), and (d~/dt)2 and T2 for a2 = 0.75 (75%). With these values, we 
calculate the right-hand side of  Eq. (9). The value obtained is B(n). From Table 2, 
we determine the values corresponding to n, with eventually a linear interpolation. 

The method described above will be exemplified on a mechanism of  Kolmo- 
gorov, Erofeev, Kazeev, Avrami and Mampel (abbreviated KEKAM)  type [3]. 

Table 2 Values of function B(n) as against values of n 

n e(n)  n O( . )  

0.0 0.333 1.8 0,920 
0.1 0.357 1.9 0.960 
02 0,382 2.0 1.000 
0.3 0A08 2.1 1.040 
0.4 0.436 2.2 1.081 
0~5 0.464 2.3 1.121 
0.6 0.494 2.4 1.161 
0,7 0,524 2.5 1.202 
0.8 0.556 2.6 1.242 
0.9 0.589 2.7 1.282 
1.0 0.623 2,8 1.322 
1.1 0.657 2.9 1.361 
1.2 0.693 3.0 1.400 
1.3 0.729 3.1 1.439 
1.4 0.766 3.2 1.477 
1.5 0.804 3.3 1,515 
1.6 0.842 3.4 1.552 
1.7 0.881 3.5 1,588 
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In this case: 

dt - Z e x p  - ( 1 - a ) [ - l n ( 1 - e ) ] l - ~  - 

At a constant heating rate, integration of  Eq. (11) gives 

m [ -  In 1 - e)]~ p(x) 

As shown before, we have 

(11) 

( l - a , )  In ( l - a , )  _ (T~'~ ''924 

B=(1-e2)ln(1-a2) (d~) \T2] (12) 

~ ,d t J  2 

Relationship (12) shows that B does not depend on the parameter  m in Eq. (11). 
This means that B indicates only the validity of  kinetics of  K E K A M  type. 

When a~ = 0.25 and 0e2 = 0.75, we have 

0.75 In 0.75 
B -  - 0.623 (13) 

0.25 In 0.25 

It  is observed that this value of  B is identical with that obtained for reaction order 
n = l :  

�9 0�9149 0.75 In 0.75 
hm . = 
.-, x 0�9 - 0.25 0.25 In 0�9 

= 0.623 

The conclusion is that the B value of  0.623 can be assigned either to the nth-order 
model (n = 1) or to a model of  K E K A M  type, indifferently of  the pair o f  values for 

a I and ~2- 

c) Three-point method 

This method is suggested by a Gorbachev 's  paper  [3]�9 We consider two arbitrary 
"points"  in the T G  curve: ~1, T1, (dct/dt)l and ct2, /2 ,  (da/dt)2. The harmonic 
mean of  T 1 and T 2 is given by 

2T1T2 
Tharm -- - -  T, + T2 

In the thermal curve, the values aha,m and (da/dt)~arm correspond to the Tharm value. 
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From Eq. (1), we can write 

(d y 
k.rm --[ l" 

L(1 - ~  ~2) J 

915 

(14) 

Gorbachev applied this method for the model of KEKAM type, imposing that 
one of  the two temperatures (T1 or T2) is T~,x (temperature corresponding to the 
maximum rate), but this fact is n o t  essential in the demonstration of  relation (14). 

Equation (14) is an exponential one, which allows evaluation of  n. Finally, to 
diminish the effect of  experimental error up to the n value, it is necessary to choose 
temperatures T1 and T 2 s o  that the ratio (1 - ~ h a r m ) 2 / [ ( 1  - -  ~1)(1 - ct2)] be as different 
as possible from 1. 

Conclusions 

Three fast methods for determination of the reaction order n have been discussed. 
The proposed two-point method has been applied to the model of KEKAM type. 
For all these models, indifferently of the m values from Eq. (11), we found the same 
value for B, namely 0.623. This value is identical with the value corresponding to a 
reaction order of 1. 

This fact shows that the fast methods cannot elucidate the mechanism, but they 
can help in the rapid derivation of apparent .kinetic parameters n and E. 
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Z u s a m m e n f a s s u n g  - -  Es wurden drei Methoden zur Schnellbestimmung yon Reaktionsordnungen 
ausgewertet: eine Einpunktmethode von Kissinger, Horowitz und Metzger, eine Zweipunktmethode 
und eine Dreipunktmethode nach einer Anregung von Gorbachev. Mittels dieser Methoden kann man 
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zwar nicht den Reaktionsmechanismus bestimmen, wohl aber eine schnelle Bestimmung der kinetischen 

Scheinparameter n und E durchfiihren. 

Pe31oMe - -  O 6 c y ~ e m , l  TpH 6i,~cTpblX MeTOlla onpeae.rlerma nopaa ra  peaKttrm: MeTO~ e,/IHHCTBeHHoH 

TOtlKH, npe2uIO~eHHblfi KHCCrIH,a~epoM, FopoBHu r~ MeTlleFepOM, lelCXO~Hbll4 MeTO~ IIByX TOqeK 14 

MeTO21 Tpex TOtleK, npe~o~eHHbIfi Fop6aqeBblM. Bce aTn MeTOJIbl He MOFyT O61,~ICHHTb MexaHt,13M 

peaKI~Hrl, rio MOFyT llOMOqb 6blCTpO BblBeCTH Ka~yi11rlec~l KI4HeTHttecKHe HapaMeTpbl n H E. 
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